

GCSE Checklist – Particle Model of Matter.

By the end of this topic (Topic 3 in the AQA GCSE Physics textbook, pages 106-119 and pages 30-32, 35-39), you should be able to do the following things:

	<u>Page(s)</u>
Describe the three states of matter in terms of the arrangement, movement and spacing between their particles	106-7
Use the particle model to explain the properties of the different states of matter	107
Define the term density of a substance and be able to do calculations using the formula: $\rho = m / V$	106
Describe how to measure the density of a regular solid object, an irregular solid object and a liquid (Required Practical no. 5)	108
Describe what is meant by the internal energy of a system	110
Describe the changes in energy stores during heating, cooling and changes of state	110-111
Name all of the changes of state and describe when they occur	110
Explain why a change of state is a physical change	111
Explain why the temperature of a substance stays constant during changes of state and relate this to energy being transferred to/from the substance	111-2
Sketch graphs of temperature against time for heating and cooling	111-112
Describe the process of conduction	35
Explain why metals have a high thermal conductivity	35
Describe the process of convection	36
Discuss how we can reduce unwanted energy transfers	37-38
Describe how to investigate the effectiveness of different materials of insulation	38
Describe the factors that affect the amount of energy required to increase the temperature of a material	30
Define specific heat capacity	30
Use and rearrange $E = mc\Delta\theta$, defining all terms and units	30-31
Know how to describe an experiment to determine specific heat capacities of various materials	31-32
Discuss the sources of error in the specific heat capacity experiment	32
Define the terms specific latent heat of fusion and specific latent heat of vaporisation of a substance	113
Use and rearrange $E = mL$, defining all terms and units	113
Explain how the temperature of a gas is related to the average energy that its particles have in their kinetic energy stores (triple only)	114
Explain the meaning of the term pressure and how a gas exerts a pressure on the walls of its container (triple only)	114
Describe qualitatively the effect of changing the temperature or volume of a gas on its pressure (while keeping other factors constant) and explain this in terms of particles (triple only)	114
Understand the relationship between the pressure and volume of a fixed mass of gas at constant temperature (Boyle's Law) (triple only)	114
Use the equation: $pV = \text{constant}$ to find the pressure or volume of a gas when the other factor is changed (triple only)	114-5
Describe the effect of doing work on a gas on the gas's internal energy (triple only)	115

GCSE Checklist – Particle Model of Matter.

By the end of this topic (Topic 3 in the AQA GCSE Physics textbook, pages 106-119 and pages 30-32, 35-39), you should be able to do the following things:

	<u>Page(s)</u>
Describe the three states of matter in terms of the arrangement, movement and spacing between their particles	106-7
Use the particle model to explain the properties of the different states of matter	107
Define the term density of a substance and be able to do calculations using the formula: $\rho = m / V$	106
Describe how to measure the density of a regular solid object, an irregular solid object and a liquid (Required Practical no. 5)	108
Describe what is meant by the internal energy of a system	110
Describe the changes in energy stores during heating, cooling and changes of state	110-111
Name all of the changes of state and describe when they occur	110
Explain why a change of state is a physical change	111
Explain why the temperature of a substance stays constant during changes of state and relate this to energy being transferred to/from the substance	111-2
Sketch graphs of temperature against time for heating and cooling	111-112
Describe the process of conduction	35
Explain why metals have a high thermal conductivity	35
Describe the process of convection	36
Discuss how we can reduce unwanted energy transfers	37-38
Describe how to investigate the effectiveness of different materials of insulation	38
Describe the factors that affect the amount of energy required to increase the temperature of a material	30
Define specific heat capacity	30
Use and rearrange $E = mc\Delta\theta$, defining all terms and units	30-31
Know how to describe an experiment to determine specific heat capacities of various materials	31-32
Discuss the sources of error in the specific heat capacity experiment	32
Define the terms specific latent heat of fusion and specific latent heat of vaporisation of a substance	113
Use and rearrange $E = mL$, defining all terms and units	113
Explain how the temperature of a gas is related to the average energy that its particles have in their kinetic energy stores (triple only)	114
Explain the meaning of the term pressure and how a gas exerts a pressure on the walls of its container (triple only)	114
Describe qualitatively the effect of changing the temperature or volume of a gas on its pressure (while keeping other factors constant) and explain this in terms of particles (triple only)	114
Understand the relationship between the pressure and volume of a fixed mass of gas at constant temperature (Boyle's Law) (triple only)	114
Use the equation: $pV = \text{constant}$ to find the pressure or volume of a gas when the other factor is changed (triple only)	114-5
Describe the effect of doing work on a gas on the gas's internal energy (triple only)	115