

Coulomb's Law

Checklist statement

I can describe the force between two point charges in a vacuum.

I can apply $F = \frac{1}{4\pi\epsilon_0} \frac{Q_1 Q_2}{r^2}$, define all terms and know their standard units.

I can explain the meaning of the permittivity of free space, ϵ_0 .

I can explain why air can be treated as a vacuum when calculating forces between charges.

I can explain why the charge on a charged sphere may be considered to act at its centre.

I can compare the magnitudes of gravitational and electrostatic forces between subatomic particles.

Electric Field Strength

Checklist statement

I can describe electric fields using electric field lines.

I can define electric field strength.

I can apply $E = \frac{F}{Q}$, define all terms and know their standard units.

I can apply $E = \frac{V}{d}$ for a uniform electric field, define all terms and know their standard units.

I can apply the relationship $Fd = Q\Delta V$, define all terms and know their standard units.

I can describe the trajectory of a charged particle entering a uniform electric field at right angles.

I can apply $E = \frac{1}{4\pi\epsilon_0} \frac{Q}{r^2}$ for a radial electric field, define all terms and know their standard units.

Electric Potential

Checklist statement

I can define absolute electric potential, including the reference of zero potential at infinity.

I can define electric potential difference.

I can apply $\Delta W = Q\Delta V$, define all terms and know their standard units.

I can explain equipotential surfaces.

I can explain why no work is done when a charge moves along an equipotential surface.

I can apply $V = \frac{1}{4\pi\epsilon_0} \frac{Q}{r}$, define all terms and know their standard units.

I can interpret graphs showing how electric field strength and electric potential vary with distance.

I can apply the relationship $E = \frac{\Delta V}{\Delta r}$, define all terms and know their standard units.

I can determine electric potential difference from the area under a graph of E against r .