

Constituents of the Atom

Checklist statement

✓

I can describe a simple model of the atom, including protons, neutrons and electrons.

I can state the charge and mass of the proton, neutron and electron in SI units and relative units.

I can apply the idea of specific charge for protons, electrons, nuclei and ions.

I can define proton number (Z) and nucleon number (A).

I can use and interpret nuclide notation ${}^A_Z X$.

I can explain what isotopes are.

I can use isotopic data appropriately.

Stable and Unstable Nuclei

Checklist statement

✓

I can explain the role of the strong nuclear force in keeping the nucleus stable.

I can describe the short-range attraction (up to about 3 fm) and very short-range repulsion (below about 0.5 fm) of the strong nuclear force.

I can distinguish between stable and unstable nuclei.

I can describe alpha decay and beta decay.

I can write and interpret equations for alpha decay and β^- decay, including the need for the neutrino.

I can explain why the neutrino was proposed to account for conservation of energy in beta decay.

Antiparticles, Annihilation and Photons

Checklist statement ✓

I know that every particle has a corresponding antiparticle.

I can compare particles and antiparticles in terms of mass, charge and rest energy (MeV).

I can identify the antiparticles of the electron, proton, neutron and neutrino.

I can describe the photon model of electromagnetic radiation.

I can apply $E = hf$, define all terms and know their standard units.

I can apply $E = \frac{hc}{\lambda}$, define all terms and know their standard units.

I can explain annihilation and pair production, including the energies involved.

Particle Interactions

Checklist statement ✓

I can name the four fundamental interactions: gravitational, electromagnetic, strong nuclear and weak nuclear.

I can explain the idea of exchange particles to describe forces between particles.

I can explain the electromagnetic interaction in terms of virtual photons.

I can describe the weak interaction in β^- decay, β^+ decay, electron capture and electron–proton collisions.

I know that W^+ and W^- bosons are the exchange particles for the weak interaction.

I can draw simple particle diagrams showing incoming particles, outgoing particles and exchange particles.

Classification of Particles

Checklist statement	✓
I know that hadrons are particles that experience the strong interaction.	<input type="checkbox"/>
I can distinguish between baryons, antibaryons and mesons.	<input type="checkbox"/>
I can explain baryon number as a quantum number.	<input type="checkbox"/>
I can apply conservation of baryon number.	<input type="checkbox"/>
I know that the proton is the only stable baryon.	<input type="checkbox"/>
I can describe the pion as the exchange particle of the strong nuclear force.	<input type="checkbox"/>
I can describe the kaon as a particle that can decay into pions.	<input type="checkbox"/>
I can identify leptons (electron, muon and neutrinos) and their antiparticles.	<input type="checkbox"/>
I can explain lepton number as a quantum number and apply its conservation for electron and muon leptons.	<input type="checkbox"/>
I can describe the decay of a muon into an electron.	<input type="checkbox"/>

Strange Particles

Checklist statement	✓
I can explain what is meant by a strange particle.	<input type="checkbox"/>
I know that strange particles are produced by the strong interaction and decay through the weak interaction.	<input type="checkbox"/>
I can explain strangeness (S) as a quantum number.	<input type="checkbox"/>
I know that strange particles are always created in pairs.	<input type="checkbox"/>
I can apply conservation of strangeness in strong interactions.	<input type="checkbox"/>
I know that strangeness can change by 0, +1 or -1 in weak interactions.	<input type="checkbox"/>

Quarks and Antiquarks

Checklist statement

✓

I can describe the properties of quarks and antiquarks, including charge, baryon number and strangeness.

I can describe how baryons, antibaryons and mesons are formed from quarks and antiquarks.

I know that only up (u), down (d) and strange (s) quarks (and their antiquarks) are required.

I can describe the quark structure of the proton and neutron.

I can describe the decay of a neutron in terms of quark changes.

Applications of Conservation Laws

Checklist statement

✓

I can describe changes of quark flavour in β^- and β^+ decay.

I can apply conservation of charge, baryon number, lepton number and strangeness to particle interactions.

I recognise that energy and momentum are conserved in particle interactions.