

Bulk Properties of Solids

Checklist statement ✓

I can define density.

I can apply $\rho = \frac{m}{V}$, define all terms and know their standard units.

I can explain Hooke's law.

I can define elastic limit.

I can apply $F = k\Delta L$, define all terms and know their standard units.

I can define tensile stress and tensile strain.

I can explain elastic strain energy.

I can define breaking stress.

I can apply energy stored = $\frac{1}{2}F\Delta L$, define all terms and know their standard units.

I can explain that elastic strain energy is equal to the area under a force–extension graph.

I can describe plastic behaviour, fracture and brittle behaviour using force–extension graphs.

I can apply energy conservation to situations involving elastic strain energy and energy used to deform materials.

I can describe how spring energy can be transformed into kinetic and gravitational potential energy.

I can interpret simple stress–strain curves.

I can explain energy conservation issues in the context of ethical transport design.

The Young Modulus

Checklist statement ✓

I can define the Young modulus of a material.

I can apply Young modulus = $\frac{\text{tensile stress}}{\text{tensile strain}}$, define all terms and know their standard units.

I can apply Young modulus = $\frac{FL}{A\Delta L}$, define all terms and know their standard units.

I can use stress–strain graphs to determine the Young modulus of a material.

I can describe a required practical to determine the Young modulus using a simple method.