

Motion Along a Straight Line

Checklist statement

I can define displacement, speed, velocity and acceleration.

I can apply $v = \frac{\Delta s}{\Delta t}$, define all terms and know their standard units.

I can apply $a = \frac{\Delta v}{\Delta t}$, define all terms and know their standard units.

I can distinguish between average and instantaneous speed and velocity.

I can describe motion using displacement-time, velocity-time and acceleration-time graphs.

I can interpret gradients of displacement-time and velocity-time graphs.

I can interpret areas under velocity-time and acceleration-time graphs.

I can describe motion with uniform and non-uniform acceleration, including examples such as a bouncing ball.

I can apply the equations of motion for uniform acceleration.

I can apply $v = u + at$, define all terms and know their standard units.

I can apply $s = \frac{(u+v)t}{2}$, define all terms and know their standard units.

I can apply $s = ut + \frac{at^2}{2}$, define all terms and know their standard units.

I can apply $v^2 = u^2 + 2as$, define all terms and know their standard units.

I can define acceleration due to gravity, g .

I can describe a required practical to determine g using a free-fall method.

I can determine g from a graph and identify random and systematic errors in the experiment.

Projectile Motion

Checklist statement	✓
I can explain that horizontal and vertical motions are independent in a uniform gravitational field.	<input type="checkbox"/>
I can solve projectile motion problems using the equations of uniform acceleration.	<input type="checkbox"/>
I can describe qualitatively the effect of friction on motion.	<input type="checkbox"/>
I can describe lift and drag forces qualitatively.	<input type="checkbox"/>
I can define terminal speed.	<input type="checkbox"/>
I know that air resistance increases with speed.	<input type="checkbox"/>
I can explain qualitatively how air resistance affects the trajectory of a projectile.	<input type="checkbox"/>
I can explain factors that affect the maximum speed of a vehicle.	<input type="checkbox"/>

Newton's Laws of Motion

Checklist statement	✓
I can state Newton's three laws of motion.	<input type="checkbox"/>
I can apply Newton's laws of motion to appropriate situations.	<input type="checkbox"/>
I can apply $F = ma$ for situations where the mass is constant, define all terms and know their standard units.	<input type="checkbox"/>
I can draw and use free-body diagrams to analyse forces.	<input type="checkbox"/>

Momentum

Checklist statement	✓
I can define momentum as mass \times velocity.	<input type="checkbox"/>
I can apply conservation of linear momentum.	<input type="checkbox"/>
I can apply conservation of momentum quantitatively to one-dimensional problems.	<input type="checkbox"/>
I can apply $F = \frac{\Delta(mv)}{\Delta t}$, define all terms and know their standard units.	<input type="checkbox"/>
I can define impulse as the change in momentum.	<input type="checkbox"/>
I can apply $F\Delta t = \Delta(mv)$, define all terms and know their standard units.	<input type="checkbox"/>
I can explain the significance of the area under a force–time graph.	<input type="checkbox"/>
I can analyse forces that vary with time, including the effect of impact forces and contact time.	<input type="checkbox"/>
I can describe elastic and inelastic collisions and explosions.	<input type="checkbox"/>
I can explain the importance of momentum conservation in ethical transport design.	<input type="checkbox"/>

Work, Energy and Power

Checklist statement	✓
I can apply $W = Fscos \theta$, define all terms and know their standard units.	<input type="checkbox"/>
I can apply $P = \frac{\Delta W}{\Delta t}$, define all terms and know their standard units.	<input type="checkbox"/>
I can apply $P = Fv$, define all terms and know their standard units.	<input type="checkbox"/>
I can interpret the significance of the area under a force–displacement graph.	<input type="checkbox"/>
I can define efficiency.	<input type="checkbox"/>
I can apply efficiency = $\frac{\text{useful output power}}{\text{input power}}$ and express efficiency as a percentage.	<input type="checkbox"/>

Conservation of Energy

Checklist statement ✓

I can state the principle of conservation of energy.

I can apply $\Delta E_p = mg\Delta h$, define all terms and know their standard units.

I can apply $E_k = \frac{1}{2}mv^2$, define all terms and know their standard units.

I can apply conservation of energy quantitatively and qualitatively.

I can analyse energy transfers involving gravitational potential energy, kinetic energy and work done against resistive forces.